Luttinger liquids

In 1d no single-particle excitations, but necessarily collective excitations

2d or higher 1d

We will see that the Landau Fermi liquid paradigm breaks down in 1d and must be replaced by a different theory.

Particle-hole excitations in 1d

\[
\begin{align*}
E_{ph}(q) &= \varepsilon(k+q) - \varepsilon(k) \\
&= \frac{q^2}{2m} + \frac{kq}{m} \\
E_{max}(k) &= \varepsilon(k+q) - \varepsilon(k) = \frac{q^2}{2m} + \frac{kq}{m} \\
E_{min}(k) &= \varepsilon(k) - \varepsilon(k+q) = -\frac{q^2}{2m} + \frac{kq}{m}
\end{align*}
\]
particle-hole excitations become sharp as $q \to 0$

$$\frac{\Delta E_{ph}(q)}{E_{ph}(q)} \to 0$$

Contrary to higher dimensions, in 1d particle-hole excitations become sharp as $q \to 0$

$\text{Ph excitation is bosonic, first glimpse of bosonization.}$

Here we will mainly follow T. Giamarchi "Quantum physics in 1d."

See also C. Kane, Boulder Summer School lecture notes on bosonization, 2005

Tomonaga-Luttinger model

Consider an idealized relativistic model
Two models are the same at low energies, but differ away from the Fermi surface.

\[H_{TL} = \sum_{k \in (k_{F}, -k_{F})} \Theta_{F} (S_{k} k - k_{F}) \, C_{k}^{+} C_{k} \]

When all negative energy states are filled, Dirac see

Particle-hole excitations in TL model:

\[E_{ph}(q) = \Theta_{F}(k_{F} + q) - \Theta_{F} k = \Theta_{F} q \]

At low momentum the bosonic p-h excitation is sharp

\[2k_{F} q \] in this model, it cannot decay
The main idea of the LETINGER theory is to use bosonic language to describe exc.
density \[\rho(x) = C^+(x) C(x) \]
for fermions
\[\rho^+(q) = \sum_k C^+_{k-q} C_k \]
convolution
\[\rho(-q) \]
sums of p-h excitations

Our plan: write \(\rho(q) \) in terms of \(\rho^+_q \)
\[\rho^+(q) = \# b_q + \# b^+_q \]
and express \(H_{\text{TL}} \) in terms of \(6, 6^+ \)

- surprisingly, the result will be quadratic.

In addition, in this language density-density interactions, that are quartic in fermions
\[H_{\text{int}} \sim \frac{1}{V} \sum_q V(q) \rho(-q) \rho(q) \]
\[\sim \frac{1}{V} \sum_q V(q) (\# b_q + \# b^+_q)^2 \]
are also quadratic in terms of \(6, 6^+ \)
and thus \(H_{\text{int}} | H_{\text{TL}} + H_{\text{int}} \) can be
easily diagonalized.
Mathematically, need to treat Dirac see carefully. To avoid infinities introduce Normal ordering: $\langle 0 | : O : | 0 \rangle = \delta_{\text{Dirac see}}$

To move all creation/annihilation left/right by construction $\langle 0 | : O : | 10 \rangle = 0$

For A, B a linear combination of creation and destruction operators

\[
: A B : = \hat{A} \hat{B} - \langle 0 | \hat{A} \hat{B} | 10 \rangle
\]

Consider how an example:

\[
: g_{\mu}(x) : = : C_{-\mu}(x) C_{\mu}(x) :
\]

We go now to Fourier space

\[
: g_{\mu}(x) : = \frac{1}{V} \sum_{p} : g_{\mu}(p) : e^{ip \cdot x}
\]

\[
: \tilde{g}_{\mu}^{+}(p) : = \left\{ \begin{array}{ll}
\sum_{k} C_{1}^{+}, k + p C_{\mu, k} & \text{if } p \neq 0 \\
\sum_{k} C_{\mu, k} C_{1, k} - \langle 0 | C_{1, k}^{+} C_{1, k} | 10 \rangle & \text{if } p = 0
\end{array} \right.
\]

finiti matrix elements

\text{final after sanction}
Now we want to compute the commutator
\[[\rho^+(p), \rho^+(p')] \]
it is nontrivial only if \(p = p' \). First we do a naive calculation,

\[[\rho^+(p), \rho^+(p')] = \sum_{k_1, k_2} \left[\begin{array}{ccc} C^+_{k_1 + p} C_{k_1} \, & C^+_{k_2 - p} C_{k_2} \end{array} \right] \]

\[= \sum_{k_1, k_2} \left(C^+_{k_1 + p} C_{k_1} \, \delta_{k_1, k_2 - p} \, - \, C^+_{k_2 - p} C_{k_1} \, \delta_{k_1 + p, k_2} \right) \]

\[= \sum_{k_2} \left(C^+_{k_2 + p - p} C_{k_2} \, - \, C^+_{k_2 - p} C_{k_2 - p} \right) \]

if we replace \(k_2 \to k_2 + p \) in the second sum, it seems that the commutator vanishes. We must be careful with \(\infty \) in matrix elements:

\[[\rho^+(p), \rho^+(p')] = \sum_{k_2} \left(C^+_{k_2 + p - p} C_{k_2} \, - \, C^+_{k_2 - p} C_{k_2 - p} \right) \]

\[+ \sum_{k_2} \langle 0 | C^+_{k_2 + p - p} C_{k_2} | 0 \rangle \, - \, \langle 0 | C^+_{k_2 - p} C_{k_2 - p} | 0 \rangle \]

the normal ordered contribution vanishes since all matrix elements are finite.
As a result we find:
\[[\hat{p}^+_r(p), \hat{p}^+_r(-p')] = \delta_{pp'} \sum_{k,k'} \left(\langle 0 | c^+_r k_2 c^+_r k_2 | 0 \rangle - \delta_{rr'} \langle 0 | c^+_r k_2 - p c^+_r k_2 - p | 0 \rangle \right) \]

Consider now periodic BC \(k = \frac{2\pi n}{L} \)

if \(q \) is occupied \(\langle 0 | c^+_r q q c^+_r q | 0 \rangle = 1 \)

\[[\hat{p}^+_r(p), \hat{p}^+_r(-p')] = -\delta_{rr'} \delta_{pp'} \frac{S_r p L}{2\pi} \]

this resembles boson commutation relation \([b, b^+] = 1 \) (up to normalization)

in addition \(\hat{p}^+_r(p>0) | 0 \rangle = \hat{0} \hat{p}^+_r(p<0) | 0 \rangle = \hat{0} \)

act as annihilation operators on Dirac sea

We define now for \(p \neq 0 \)
\[b^+_p = \sqrt{\frac{2\omega}{L |p|}} \sum_{s} \theta(s_r p) \hat{p}^+_r(p) \]
\[b^+_p = \sqrt{\frac{2\omega}{L |p|}} \sum_{s} \theta(s_r p) \hat{p}^+_r(-p) \]

\[[b^+_p, b^+_{p'}] = \delta_{pp'} \] canonical relation
Now write everything in terms of Gs.

One can show

\[
\begin{align*}
\{6_p, \eta_\lambda\} &= \delta_\varepsilon p \ 6_p \\
H_{TL} &= \sum_{p \geq 0} \eta_\varepsilon |p| \ 6^+_p \ 6_p
\end{align*}
\]

Unexpected result: in bosonic language free Dirac theory is quadratic in 6 and 6^+! Since interactions are quadratic in p, they are easy to introduce, we get still quadratic theory?

? Can we write elementary fermions in terms of bosonic operators?

use

\[
\begin{align*}
\{p^+_p(p), c_r(x)\} &= \frac{1}{\sqrt{V}} \sum_{k_1, k_2} e^{i k_2 p} \left[c^+_r \k_1 , p c_r \k_1, c^+_r \k_2 \right] \\
\eta_\varepsilon &= -e^{ip^+_p \cdot x} c_r(x) \\
c_r(x) &= e^{\sum_p e^{i p^+_p (\cdot p) \left(\frac{2 \pi \hbar}{p L} \right)} p^+_p (-p)}
\end{align*}
\]

non-trivial transformation
Subtlety: Rus of the last equation does not change fermion particle number, but \(c_0 \) should do that, One can introduce an operator \(\mathcal{O}_N \) (Klein factor) which suppresses charge uniformly in space and change total \(\Phi \# \# \) by \(1 \). This operator is not important for calculation of space-time dependence of correlation functions, see Giamarchi book for details.

We succeeded in bosonization, but can we go beyond the idealized TL model? Instead of working with \(6, 6^* \), it is convenient to work with two real angular fields \(\Phi \) and \(\Theta \)

\[\phi \rightarrow \text{density fluctuaions} \]

\[\Theta \rightarrow \text{phase fluctuations} \]
\[\phi(x) = \left[\rho_0 - \frac{1}{\text{const.}} \nabla \phi \right] \sum e^{i\nabla(x - \phi(x))} \]

\[\rho_0 \text{- background} \]

\[\rho_{\text{const.}} \text{ at } q \ll k \]

Localized particle = \(\mathcal{N} \text{ kink of } \phi \)

\[\psi^+(x) = \sqrt{\rho(x)} e^{-i\Theta} \text{ for pure field} \]

1) We will show below that \(\Theta \) and \(\nabla \phi \) are canonically conjugate fields.

2) The facts on macroscopic scales (\(l \gg k^{-1} \)) and the encode universal long-wave length physics beyond the TL model into Luttinger liquid paradigm.

Calculation of commutator of \(\Theta \) and \(\phi^+ \):

First start from elementary bosonic particle:

\[[\psi^+_n(x), \psi^+_m(x')] = \delta(x - x') \]

\[\psi^+_n = \sqrt{\rho} e^{-i\Theta} \]
\(\mathbf{g} = \mathbf{P} \mathbf{a}, \mathbf{a} \mathbf{m} \), form the adjoint
\[
[p, q, \theta] = i \delta (x-x')
\]
Using now that at low moment
\[
\bar{\mathbf{g}}(\mathbf{x}) \propto \mathbf{p} - \frac{1}{\lambda_c} \mathbf{\nabla} \mathbf{\phi}
\]
we get
\[
[i \frac{1}{\lambda_c} \mathbf{\nabla} \mathbf{\phi}_y, \theta(x')] = - i \delta (x-x')
\]
for more careful derivation see Gianorbi.

We thus found:

1) Canonical moment of \(\phi(x) \) is
\[
\mathbf{\Pi}(x) = \frac{i}{\lambda_c} \mathbf{\nabla} \mathbf{\theta}
\]
2) \([\phi(x), \theta(x')] = - i \frac{1}{2 \lambda_c} \mathbf{\Delta} \mathbf{\phi}(x-x')\]

Elementary fields in terms of \(\phi \) and \(\theta \):
\[
\psi^+_B(x) = \sqrt{p_0 - \frac{1}{\lambda_c} \mathbf{\phi}} \sum_n e^{2i n (\pi \rho_0 x - \phi(x))} e^{-i \theta(x)}
\]
A boson we can also get the representation of fermion by attaching JW string
\[
\psi^+_w(x) = \psi^+_B(x) e^{i \int_0^x \mathbf{p}(y) \mathbf{dr}} = \psi^+_B(x) e^{i \int \mathbf{p}_B - \frac{1}{\lambda_c} \mathbf{\phi}}
\]
\[
\psi^+_B(x) = \sqrt{p_0 - \frac{1}{\lambda_c} \mathbf{\phi}} \sum_n e^{i (2n+1) (\pi \rho_0 x - \phi(x))} e^{-i \theta(x)}
\]
\(\theta \) and \(\phi \) can be related to \(b^+ \) and \(b \) derived before.

Hamiltonian of the Lettinger liquid in free theory

\[
\mathcal{H}_{\text{kin}} = \int \frac{\partial \psi^* \partial \psi}{2m} + \frac{\rho_0}{2m} \int (\partial \theta)^2
\]

- density-density \(\rho_+ \) = \(\mathcal{H}_{\text{kin}} + \int (\partial \phi)^2 \)

Mixed terms \(\sim \partial \phi \partial \theta \) are prohibited by the inversion symmetry \(x \to -x \).

Most general Lettinger liquid Hamiltonian

\[
\mathcal{H} = \frac{1}{2\pi} \int d\tau \left[u \kappa \left(\frac{\partial \Pi(x)}{\partial x} \right)^2 + \frac{\kappa}{\kappa} \left(\frac{\partial \phi}{\partial x} \right)^2 \right]
\]

and the corresponding action

\[
S = \frac{1}{2\pi K} \int d\tau d\tau' \left(\frac{1}{\omega} \left(\partial_\tau \phi \right)^2 + u \left(\partial_\tau \phi \right)^2 \right)
\]

\(u \) - velocity

\(k \) - Lettinger parameter

\(K = \left\{ \begin{array}{ll} > 1 & \text{attractive} \\ < 1 & \text{repulsive} \end{array} \right. \)
This is the most general structure for interacting spinless (either bosonic or fermionic model) in 1d. While in the relativistic TL model \(w \) and \(K \) can be determined exactly in terms of microscopics, in other 1d models these parameters are difficult to compute (can be measured experimentally). Correlation functions and thermodynamics.

\(\phi, \theta \) - dimensionless angles
Since the action is quadratic in \(\phi \), we can extract \(\langle \phi \phi \rangle \) for it.

First, introduce \(\eta = 2n \)

\[
S = \frac{1}{2\alpha k} \int dx dy \left((\partial_y \phi)^2 + (\partial_x \phi)^2 \right)
\]

in Fourier space \(x,y \sim \vec{q} \).