Boson-vortex duality

We emphasized that superconductors and superfluids are very different at low energy (gapped vs gapless), but there is an intriguing relation (duality) between them in two dimensions. Consider a bosonic Hubbard model on a square lattice — hopping particles with point-like repulsion

\[\hat{H} = -J \sum_{\langle i,j \rangle} (\hat{b}_i^+ \hat{b}_j + h.c) \]

\[+ \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - J \sum_i \hat{n}_i \]

where \(\hat{n}_i = \hat{b}_i^+ \hat{b}_i \)

1) \(J = 0 \) lattice sites decouple \(\rightarrow \) single site problem

- \(n = 0 \) \(\mu < 0 \)
- \(n = 1 \) \(0 < \mu < 0 \)
- \(n = 2 \) \(0 < \mu < 20 \)

Integer occupation, filling changes in Mott insulator

2) \(U = 0 \) \(\rightarrow \) free boson lattice gas

Adding \(U \ll J \) \(\Rightarrow \) bosonic superfluid
Quantum phase diagram:

\[\langle \psi_i \rangle \neq 0 \]

Closed to the quantum phase transition between the \(U(1) \) preserving MI phase and the \(U(1) \) SSB superfluid phase

\[\hat{n} = n_0 + \delta \hat{n} \]

\[n_0 = \frac{\tilde{F}}{U} \]

Approximate Hamiltonian:

\[\hat{H} = -2J n_0 \sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j) + \frac{U}{2} \sum (\delta \hat{n})^2 \]

Minimize the cosine term

Phase is sharp in GS

Particle number per site is uncertain

\[\cos(\phi_i - \phi_j) \rightarrow \frac{1}{2} (\phi_i - \phi_j)^2 \]
Close to the MI/SSF quantum critical point one can write a continuum field theory of low-energy physics in two very different ways:

1) In terms of bosons b:

$$\mathcal{L}_{xc} = \left| \partial \mu \phi \right|^2 + m^2 \left| \phi \right|^2 + \kappa \left| \phi \right|^4$$

$m^2 < 0$ SSB superfluid phase

$m^2 > 0$ normal Mott insulator phase

as MI \rightarrow SF, global $U(1)$ symmetry undergoes SSB at $T = 0$

2) In terms of vortices ψ:

Start in the SSB superfluid phase

vortices are high-energy excitations in this phase, try to "condense" them

Remember however in 2d

*) two point-like vortices interact

$$V(\mathbf{r}) \sim -q_1 \cdot q_2 \ln r$$
*) Experience the Magnus force:

\[L_x = -\frac{i}{2} \hbar s \varepsilon_{ij} X_i \dot{X}_j \]

Effective magnetic field

In 2d vortices behave like point-like charged particles that live in magnetic field \(B_\nu \sim \hbar s \), we cannot SSB condense them, but can use Higgs theory:

\[\mathcal{L}_{\text{Ah}} = \left(\partial_\mu - i A_\mu \right) \mathbf{A}^2 + \bar{\psi} \left(i \gamma^\mu \partial_\mu - m^2 \right) \psi + \frac{1}{4} F_{\mu \nu}^2 \]

Mott insulator

\[\langle \mathbf{A} \rangle = 0 \]

\[m^2 < 0 \]

Higgs phase

\[\langle \mathbf{A} \rangle = 0 \]

\[m^2 > 0 \]

Vortices are gapped, can be ignored

2+1 dim Maxwell EO

with massless photon excitation

Goldstone of \(U(1)_s \) SSB
Dictionary of boson/wortex duality:

XY model
\[j^x = b \times \delta_x \ b \]

boson \(b \)

2\pi vortex of \(b \)

\[\phi \rightarrow -\phi \]
\[b = \Gamma e^{i\phi} \]

Abelian Higgs model
\[j^n = \frac{1}{2\pi} \epsilon_{n \rho \phi} \partial_\phi A^\rho \]

instanton of \(A^\rho \) (destroys flux of \(A \))

Numerous checks of this duality close to the critical point (Monte-Carlo, ...)

Rigorous duality was defined on a lattice

Peskin 1978

Dasgupta/Halperin 1981